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ABSTRACT 

Towed arrays of vector sensors are currently being employed in a variety of naval 

applications. The use of acoustic vector sensors, which measure the acoustic pressure and 

three orthogonal axes of associated particle motion, are of interest because of the signal 

gain and additional directionality achievable. The majority of analysis performed on 

vector sensor arrays has involved the advantages of conventional (linear) standard 

cardioid beamform processing.  In this work, we shall explore the possible advantages of 

nonstandard linear processing techniques as well as new nonlinear (but non-adaptive) 

beamforming processors.  The performance of these various beamforming methods will 

be examined using standard FFT processing of simulated data from a parabolic equation 

model in the band of 1250 - 1750 Hz, for both high and low SNR targets, in an isospeed 

profile shallow water environment. 
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I. INTRODUCTION  

A great deal of work has been reported over the past decade on the processing of 

arrays of acoustic vector sensors [1], [2], [3], [4], [5], [6]. These sensors, which 

simultaneously respond to the scalar acoustic pressure and the vector motion of the 

medium (fluid velocity or acceleration), provide unique information on the total 

directional flow of acoustic energy at a single sensor.  In this sense, each sensor 

independently provides three channels of directional sound signal information in addition 

to the standard pressure signal for an incident plane wave. Other work with vector 

sensors has concentrated on the theoretical development of processing techniques 

designed to combine these signals in a manner to best take advantage of their use [4], [5].  

With the additional degrees of freedom available with four signal channels per sensor, 

there become a number of ways to combine the incoming signals and form a coherent 

beam pattern for both a single sensor as well as an array of such sensors.  The most 

commonly studied has been the standard uniform cardioid beamform, associated with 

conventional linear vector sensor processing of equal pressure and vector velocity 

weighting, in which vector sensors have demonstrated a theoretical 6dB look direction 

signal gain over conventional linear scalar pressure arrays, in addition to impressive 

demonstrations of left/right ambiguity rejection not available to these arrays [4], [5]. 

Various, linear vector sensor weighting schemes have been evaluated in order to 

“optimize” the output of the beamformer in the context of maximizing directivity in the 

mainlobe while minimizing sidelobe interference [4].  Standard linear processing allows 

for ease of computation, using established Fast Fourier Transform (FFT) algorithms 

capable of “real time” implementation. These standard processing schemes, however, 

suffer from signal degradation in complex, interfering multi-path/multi-target 

environments. These  efforts have led others to examine non-linear, data adaptive 

processing schemes that provide highly refined directivity in only the look direction [3], 

[7]. These processing schemes, however, in addition to the necessity for some degree of 

data conditioning, can become computationally cumbersome and thus best implemented 

in “post time” processing.  
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Still there exists the possibility for new processors, capable of providing better 

resolution in multi-path/multi-target arrival environments, but are non-adaptive, and 

capable of real time implementation using computationally efficient FFT algorithms. 

These processors range from uniquely weighted null-steered beams to nonlinear 

combinations of separately processed linear beamforms [8]. These processors may prove 

to have benefits in directivity and multi-target discrimination over the standard linear 

cardioid similar to the directivity increase already demonstrated over the conventional 

linear scalar pressure arrays. 

Previous work by LT Eric P. Jautaikis of the Naval Postgraduate School 

demonstrates the advantages of vector sensor cardioid beamforming over conventional 

scalar pressure beamforming, in both look direction gain and ambiguous angle rejection, 

using a variety of processing techniques (including adaptive processing) and test case 

parameters [7]. The goal of this thesis it to expand on the results of this work in order to 

experiment with further gains and ambiguity rejection using the unique properties of 

pressure and vector velocity relative weighting in both linear and nonlinear (but non-

adaptive) processing schemes developed by Professor Kevin B. Smith of the Naval 

Postgraduate School [8]. The benefit of these unique beamforming techniques over 

conventional cardioid beamforming will thus be explored using the same test case 

parameters developed by Jautaikis, with the benefit of the results of this work as a 

starting platform.   
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II. ACOUSTIC VECTOR FIELDS 

The relationship between acoustic pressure and the acoustic particle velocity field 

provided by the Linear Euler Equation, as well as the assumptions provided by the Linear 

Wave Equation, provide both the fundamentals of signal propagation as well as the basis 

upon which the pressure and velocity signals can be combined in a coherent vector sensor 

beamforming algorithm [9], [10]. These relationships are critical to the Monterey-Miami 

Parabolic Equation (MMPE) propagation model used to generate the test data [11]. 

A. EQUATION OF CONTINUITY 

Consider a volume element dV dxdydz=  in a fixed orientation in space. If we 

consider the rate of flow through the volume element in the x-direction, we get 

 ( ) ( )x x
x x

v v
v v dx dydz dV

x x
ρ ρ

ρ ρ
⎡ ⎤∂ ∂⎛ ⎞

− + = −⎢ ⎥⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
 (2.1) 

where ρ  is the fluid density.  Doing the same for the other orthogonal directions 

generates a combined set of equations describing the net influx into volume element  

 ( ) ( ) ( ) ( )yx z
vv v

dV v dV
x y z

ρρ ρ
ρ

⎛ ⎞∂∂ ∂
⎜ ⎟− + + = −∇
⎜ ⎟∂ ∂ ∂⎝ ⎠

i  (2.2) 

The rate of mass increase in the volume element is given by  

 m dV
t t

ρ∂ ∂
=

∂ ∂
. (2.3) 

Since the rate of increase of the mass must equal the net influx, combining Equations 

(2.3) and ((2.4)) yields the Mass Continuity Equation:  

 ( )v
t
ρρ ∂

−∇ =
∂

i  (2.4) 

B. EULER’S EQUATION 

Next we consider the same fluid element, dV , but let this element move in space 

and allow it to contain a mass, dm , of the given fluid.  By applying Newton’s Second 

Law, the force exerted upon the mass of the element is  
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 df a dm=  (2.5) 

As before, we consider the net force exerted upon the element in the x-direction 

 x
Pdf P P dx dydz
x

⎡ ∂ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦
 , (2.6) 

where P represents the total pressure.  Similar equations can be found for the other 

orthogonal directions to give  

 df PdV= −∇  . (2.7) 

The acceleration felt by the element can be shown to be 

 v x v y v z va
t t x t y t z

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
 , (2.8) 

which can be reduced to 

 ( )va v v
t

∂
= + ∇

∂
i  . (2.9) 

We can now rewrite Newton’s Second Law by combining Equations (2.6) and, (2.8) 

using the fact that the mass dm is equal to dVρ , as 

 ( )vP v v
t

ρ ∂⎛ ⎞−∇ = + ∇⎜ ⎟∂⎝ ⎠
i  . (2.10) 

If we assume that the acoustic field represents a small perturbation to the ambient 

pressure and density of the medium, i.e. 

 0P P p= + ′  ,   0p P  , (2.11) 
 0ρ ρ ρ′= +  ,  0ρ ρ′ , (2.12) 

and the particle velocity is also a small quantity associated only with the acoustic field, 

then keeping just first order terms gives 

 0
v p
t

ρ ∂
= −∇ ′

∂
. (2.13) 

This is the Linear Euler’s Equation, which relates the time dependence of the 

acoustic velocity field to the gradient of the pressure for small amplitude pressure and 

density perturbations within a fluid. 
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C. LINEAR EQUATION OF STATE 

In water, the Linear Equation of State, describing the relationship between density 

and pressure, can be described by a stress-strain curve, which can be described by the 

series expansion about the ambient pressure and density to 1st order as a linear 

approximation for small amplitude changes: 

 2

0

1p cΒρ′ = ρ′
ρ

′ = , (2.14) 

where Β = 0
Ρρ
ρ

∂
∂

 represents the adiabatic bulk modulus and c represents the speed of 

sound in the fluid. 

D. LINEAR WAVE EQUATION 

We next wish to unify the Mass Continuity Equation and the Linear Euler’s 

Equation.  We begin by taking the divergence of the Linear Euler Equation (2.13) 

 2
0

v p
t

ρ ′∂⎛ ⎞∇ = −∇⎜ ⎟∂⎝ ⎠
i . (2.15) 

We then take the time derivative of the first-order terms in the Mass Continuity Equation 

(2.14) to obtain 

 
2

0 2

v
t t

ρρ
′∂ ∂⎛ ⎞−∇ =⎜ ⎟∂ ∂⎝ ⎠

i  . (2.16) 

Combining these two equations with the Linear Equation of State (2.13) results in 

 
2 2

2
2 2 2

1 pp
t c t
ρ ′′

′∂ ∂
∇ = =

∂ ∂
 , (2.17) 

This is the linear wave equation, and like the Linear Euler Equation from which it 

is derived, is valid for small amplitude pressure and density perturbations within a fluid.  

E. PLANEWAVE PROPAGATION 

The solution to the Linear Wave Equation (2.16) for a sound wave in the far-field 

can be approximated as a combination of planewaves of the form 

 i k rp e +ωιΡ ( )= i , (2.18) 
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where k is the angular wavenumber vector in the direction of the incoming wave at 

position r , and ω is the angular frequency related by the  relation  f ckω = 2π = .  

Similarly, by employing the Linear Euler Equation (2.12), we can describe the 

velocity field of an incoming planewave by  

 i k rv Ve +ωι( )= i  (2.19) 

where the relationship between the magnitude of particle velocity and scalar pressure can 

be shown to be interchangeable by the “acoustic impedance” quantity, cρ , such that  

 PV
cρ

= . (2.20) 

The direction of v  coincides with the direction of the wavenumber k .This then provides 

the basis for our vector geometry analysis, as both the pressure and velocity field are 

modeled as linear plane waves in the far field approximation. 

F. VECTOR GEOMETRY 

The use of vector data necessitates the establishment of a consistent geometry 

convention, visually illustrated below.  The three vector components are aligned 

orthogonally along the x, y and z-axes, with the x-y plane defining the horizontal and the 

z-axis defining the vertical being positive downwards (as is typical in ocean acoustic 

models).  Specific directions are then given by defining the x-axis along the θ = 0  

direction, the y-axis along the θ = 90° , φ = 0  direction, and the z-axis in the 

θ = 90° ,φ = 90°  direction, as illustrated in Figure 1 below.   
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Figure 1.   Vector Sensor Array Geometry 

G. CARDIOID STEERING 

To understand the response of an array of vector sensors, we begin by looking at 

the response of just a single vector sensor m.  The plane wave response of each vector 

sensor velocity component is a dipole.  We can write the general form of the time 

invariant vector sensor planewave response as 

 mik r
m mv V e= i , (2.21) 

where mik r
xm xmv V e= i , mik r

ym ymv V e= i , and mik r
zm zmv V e= i .  Using the vector geometry 

defined, the response of each component is defined by  

 
 cosxm mV V θ=   ,   sin cosym mV V θ φ=   ,   sin sinzm mV V θ φ=  . (2.22) 
 

It is readily apparent that although velocity-only sensors have directivity gain 

over omni-directional pressure-only sensors, the velocity-only data produces no 

distinction between the mainlobe directivity response to an incident planewave and the 

equally directive backlobe.  By combining the dipole velocity response with the omni-

directional pressure signal, we are able to take advantage of the phase relationship 
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between the two to effectively “steer” a distinct mainlobe response for a single vector 

sensor.  Figure 2 displays a single element vector sensor dipole response to a 1500 Hz 

planewave, scaled to a 40dB pressure magnitude reference for simplicity. These plots, 

and subsequent plots of this type, attempt to illustrate the nature of the response over all 

angles of θ and φ in the 3-D view (oriented for best null clarity), as well as the dominant 

null/mainlobe structure in the “cutaway” view along the plane of interest (φ = 0° ). 

 
 
 

 
 
 

Figure 2.   Single Element Velocity Dipole Response 

In order to combine the omni-directional pressure and dipole velocity data, we simply re-

scale either the pressure or velocity values relative to the other by the acoustic 

impedance, ρc, according to Equation (2.19) , e.g. 

 ,  mik r m
pm pm pm

Pv V e V
cρ

= =i  . (2.23) 

If we sum the weighted signals, pressure and three velocity components for our 

single vector sensor element, m, we can “steer” the response of the vector sensor, by 

 
( ) ( )

( )
,

m

m s s xm xm ym ym zm zm pm pm

ik r
xm xm ym ym zm zm pm pm

b w v w v w v w v

w V w V w V w V e

θ φ = + + +

= + + + i
 (2.24) 
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where ( ),m s sb θ φ  is the output from the combined signals and  ( ),s sθ φ  represents the 

steering direction of the vector sensor.  The weights applied to each component then 

dictate how the sensor is steered.  

We then define the weights in terms of the dipole response of each vector sensor 

       cosxm m sw W θ= , sin cosym m s sw W θ φ= , sin sinzm m s sw W θ φ= , and pm mw W= ,    (2.25)

where mW  represents the scalar weighting value applied across the pressure and velocity 

channels. In this way, Equation (2.23) becomes an ideal “correlation” beamformer for a 

time invariant planewave, as we can vary the incident wave in all directions in θ and φ  

to produce a maximum response when ,s sθ θ φ φ= = , or in the look direction defined by 

the “standard” convention of Equation (2.24). Applying this logic using “uniform” 

weighting of the single pressure and three velocity channels produces the standard 

cardioid response for a single, incident plane wave, as given by Figure 3.  

It can be shown that when the sensor is properly steered in the same direction as 

the incoming plane wave, the standard uniform cardioid weighting summation reduces to 

 
( ) ( )2 2 2 2 2, cos sin cos sin sin 1

2

m

m

ik r
m s s m m s s s s s

ik r
m m

b W V e

W V e

θ θ φ φ θ θ φ θ φ= = = + + +

=

i

i
.  (2.26) 

This essentially produces twice the signal gain (6dB intensity) over the pressure-only 

sensor with the addition of the equally weighted dipole velocity component. This, 

however, is a measure of intensity directly at the look angle. When integrated over all   

θ and φ , the work of  Cray and Nuttall (2001) demonstrates that the uniformly weighted 

cardioid sensor provides an overall increase of 3dB in directivity (intensity gain relative 

to an omni-directional  pressure–sensor of equal power), in an isotropic noise 

environment [4]. In addition, unlike the pressure-only sensor, each element now becomes 

a uniquely “directional” sensor, with a broad mainlobe aligned in the steer direction, and 

a well-defined deep null in the direction opposite the incoming planewave [8]. 
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Figure 3.   Single Element  Cardioid  Response  

It can easily be shown that the relative pressure weighting determines the location 

of the null and the size of the lobes. This is apparent when the relative pressure weighting 

is decreased from unity (cardioid) to zero (dipole). In terms of a maximum sensor gain, a 

more “optimal” weighting can be defined by the relative scaling [4]  

3 cosxm m sw W θ= , 3 sin cosym m s sw W θ φ= , 3 sin sinzm m s sw W θ φ= , and pm mw W= .  (2.27) 

This produces the plane wave response depicted in Figure 4.  While this does provide an 

additional directivity in the steer direction, the deep null now occurs at ~110 deg relative 

to the mainlobe, and a distinct backlobe is now apparent opposite the steer angle.[8] 

Relative to the pressure-only case we find a vector sensor response of 

( ) ( )2 2 2 2 2, 3cos 3sin cos 3sin sin 1

4

m

m

ik r
m s s m m s s s s s

ik r
m m

b W V e

W V e

θ θ φ φ θ θ φ θ φ= = = + + +

=

i

i
 ,    (2.28) 

or four-fold signal increase (12dB) in the look direction. This has been shown by Cray 

and Nuttall (2001) to provide the weighting of maximum (6dB) directivity gain in an 

isotropic noise environment, thus achieving the “optimal” weighting for peak array gain 

using standard linear processing techniques. [4] Caution should be used when applying 

weighting amplification, however, as this analysis does not take into account the 

increased channel noise that may result in low SNR environments, which will be 

significant later in this thesis. 
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Figure 4.   Single Element Optimal Response  

This description of the optimal weighting scheme doesn’t completely indicate 

how one may adjust the relative location of the null.  Instead we introduce a general 

weighting scheme defined by [8] 

cosxm m sw W θ=  , sin cosym m s sw W θ φ=  , sin sinzm m s sw W θ φ=  , and pm mw AW=  

( )0cos sA θ θ= − − .                                         (2.29) 

where  θ0   represents the angle that we wish to steer the null.   For example, to steer the 

null in the opposite direction from the mainlobe, we require 0 sθ θ π− =  which leads to 

1A = , or the standard cardioid pattern.  Optimal weighting was achieved when we set 

0 0.6sθ θ π− ≈  (or 110 deg), leading to 1A = / 3 .  It can be shown that for any constant 

value of A the null is essentially “fixed” relative to the mainlobe, and the vector sensor 

steering pattern will have a planewave peak response when the steering direction aligns 

with the incoming signal, sθ θ= .  

To take this insight one step further, we may wish to effectively steer the null in 

the direction of the “ambiguous” or “conjugate” angle to the planewave arrival direction  
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θ relative to the “forward endfire” (θ = 0 °) x-axis of element orientation. In this case, we 

desire a null at the conjugate arrival path defined by 0 2 sθ π θ= − , which by equation 

(2.28) is satisfied when [8]     

( ) ( )cos 2 2 cos 2s sA π θ θ= − − = −  .           (2.30) 

Caution must be used when applying this weighting scheme dynamically, however, as the 

peak response does not occur in the direction of the incoming signal as in the fixed case, 

but instead satisfies the equation [8] 

( ) ( )sin 2sin 2s sθ θ θ− =  .    (2.31) 

If the incoming signal is along 0θ =  or θ π= / 2 , this equation may be solved 

analytically.  In general, however, it is a transcendental equation. When θ π= / 2 , the 

response can be shown to provide a peak at sθ π= / 2  and a null in the ambiguous 

direction for all look angles, but produces a skew in peak response at other angles off 

broadside.  Figure 5 displays the single element dynamic-null steering response for 

sθ π= / 2   (broadside) and sθ π= / 4   (45° from broadside), with 0θ  = 270° and 0θ  = 

315° respectively. The mainlobe skew from the steer angle is most prominent for further 

off-broadside responses, however, the effect of this skew can be significantly reduced 

when multiple elements are combined coherently in array processing, as will be 

demonstrated later in this work.   It can also be noted that unlike the previous single 

sensor weightings, which were “response insensitive” to orientation in θ  and 

“structurally insensitive” along  φ , dynamic null steering is “sensitive” to both. Thus we 

introduce a “forward endfire” axis for the dynamic null steered sensor (θ  = 0°) along the 

x-axis. Although not instinctively evident from single element analysis, the greater 

significance of dynamic null placement along the conjugate arrival path 0θ  will have 

greater significance for our analysis of linear processing of an array of sensors along a 

common x-axis. 
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Figure 5.   Dynamic Null-Steered Single Element Response   at  90° (Top) and 45° 
(Bottom) Relative to Forward Endfire (Along the Vertical Axis) 

 

H.   LINEAR PROCESSING TECHNIQUES 

For planewave beamforming, the time-invariant linear processor is typically 

defined by  

 ( ) ( ) ( )
2

, s mpv ik r
s s xm xm ym ym zm zm pm pm

m

B w v w v w v w v eθ φ −= + + +∑linear
i  ,  (2.32) 

where coss n n sk r kx θ=i  indicates the steering direction of a linear array of elements 

oriented along the x-axis [4].  It is to be noted that, although individual elements can be 

steered independently in φs and θs, the array steering is only accomplished by relative 
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phases along the array axis, corresponding to steering in θs. Steering individual vector 

sensor elements independently is accomplished by adjusting the element weights 

independently as previously discussed.  However, it is standard practice in linear 

processing to apply a common vector steering across the array, and will thus be the 

convention used throughout this thesis.  This will have implications later when analyzing 

the result of applying fixed null weightings to individual elements in a linear array. 

Linear array beamforming is based simply on matching the relative signal phases 

along the array as measured by each element.  Like the ideal correlation processor for the 

single element weighting, the output of the beamformer is maximized when the steering 

direction, ( ),s sθ φ , matches the direction of the incoming planewave. Since mik r
xm xmv V e= i , 

mik r
ym ymv V e= i , mik r

zm zmv V e= i and mik r
pm pmv V e= i , this can be further illustrated by 

rewriting Equation (2.32)  as 

( ) ( ) ( ) ( )
2

, m s mi k r k rpv
s s xm xm ym ym zm zm pm pm

m

B w V w V w V w V eθ φ −= + + +∑linear
i i .   (2.33) 

When ( ) ( ), ,s sθ φ θ φ= , Equation (2.33) shows that the phase mismatch term vanishes 

(i.e., sk k= ), and the array is properly steered for a peak response in the look direction. 

Equation (2.32) also provides an explanation of  the inherent problem with conventional 

linear processing in regards to “left/right ambiguity”. It can easily be shown that for 

pressure-only (scalar-pressure) beamforming, a peak response of equal magnitude will 

occur at both the look angle sθ and it’s conjugate angle 0 2 sθ π θ= −  relative to the 

forward endfire axis, with no structural variation along φ . The addition of the vector data 

and weighting adds variation to φ , providing both directivity gain and left/right 

ambiguity “rejection”. This will be illustrated in the subsequent sections.  

In order to consider other vector sensor steering patterns, let us rewrite the 

steering of each element as   

 ( ) ( ) ( ), mpv ik r
m xm xm ym ym zm zm pm pmb w V w V w V w V eθ φ = + + + i .    (2.34) 
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Note how this element steering maintains the relative signal phase along the array 

(defined by nk ri ) and the term in parentheses has a maximum when ( ) ( ), ,s sθ φ θ φ= .  

Then 

 ( ) ( ) ( ) ( )
2

, , s mpv pv ik r
s s m s s

m
B b eθ φ θ φ −= ∑linear

i .      (2.35) 

Due to the linear nature of this processor, we could also write 

 ( ) ( ) ( ) ( ) ( ), s n s mpv p xik r ik r
s s m m s

m m

B b e b eθ φ φ− −= + +∑ ∑linear
i i  

                                ( ) ( ) ( ) ( )
2

, ,s m s my zik r ik r
m s s m s s

m m

b e b eθ φ θ φ− −+∑ ∑i i ,     (2.36) 

where, for example, ( ) ( ), mx ik r
m xm xmb w V eθ φ = i , and each vector sensor component is steered 

by the array phase (beamformed) before summing the components together.  This form 

will be useful to consider in later algorithms [8]. 

In order to examine some fundamental responses of this linear processing 

approach, we consider a simple linear array of 256 elements with .25m element spacing, 

based on a ¼ wavelength (λ) spatial sampling for a 1500 Hz signal and a speed of sound 

(c) of 1500 m/s. The time-invariant reference planewave, incident in the horizontal 

( 0φ = ) at bearing angles on a both broadside (θ = 90°) and θ = 45° is linearly processed 

using the common vector steering scheme described by Equation (2.35), and applied to 

the variety of elemental weighting schemes already described for single element analysis. 

The inherent strengths and drawbacks of each weighting scheme are thus illustrated in 

terms of the benefit in both directivity and left/right ambiguity rejection over 

conventional scalar pressure arrays in Figures 6-9. These plots, again, are scaled relative 

to a 40 dB single element pressure magnitude response in order to demonstrate the 

expected array gain of the combined elements due to linear processing, as well as the 

azimuthul variation of the vector beamformers. They represent graphical mathematic  
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solutions to an “ideal” time-invariant planewave correlation processor “tuned” to a 

specific spatial wavelength in a perfectly noiseless environment, and are thus only valid 

for illustrative purposes. 

 

                                

 

Figure 6.   Scalar-Pressure Array Response at 90° (Broadside) and 45° Relative to 
Forward Endfire (Along the Vertical Axis) 
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Figure 7.   Uniformly Weighted Cardioid Array Response at 90° (Broadside) and 45° 
Relative to Forward Endfire (Along the Vertical Axis) 
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Figure 8.   Optimally Weighted Array Response at 90° (Broadside) and 45° Relative 
to Forward Endfire (Along the Vertical Axis) 
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Figure 9.   Null-Steered Array Response at 90° (Broadside) and 45° Relative to 
Forward Endfire (Along the Vertical Axis) 

 

Initial observation from Figure 7 confirms that the uniformly weighted standard 

cardioid processor has directivity advantages at the broadside responses, yet falls short of 

left/right ambiguity rejection at the off-broadside angles. Figure 8 shows how the 

optimally weighted processor improves signal gain, but at the cost of left/right 

discrimination near broadside. This is an inherent drawback of a linear array of “fixed” 

null element weightings employing common vector steering, as the null of the individual 
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elements will not necessarily match with the conjugate look angle 0θ   This problem is 

alleviated by employing common dynamic null steering relative to forward endfire for the 

individual element weighting of the array. Figure 9 demonstrates that the null-steered 

processor shows good left/right discrimination in both the broadside and off-broadside 

cases. It can also be noted that although the dynamic null-steered processor sacrifices 

some gain in the look direction due to “skewing” of look angles for the individual 

elements, this is expected to be of little consequence for a sufficiently large number of 

array elements.   

I.  NON-LINEAR PROCESSING TECHNIQUES 

The previous analysis of the linear beamformer discussed how different fixed null 

weightings show great directivity, but with some degradation in the processor’s 

performance due to poor left/right ambiguity along some look directions. In contrast, the 

dynamic null-steered processor maintained positive ambiguity resolution, but at the cost 

of main lobe directivity at angles off broadside due to skewing. This leads us to consider 

some alternative techniques that attempt to combine the positive features from different 

linear processors in a non-linear fashion.   

The different benefits of the cardioid and dynamic null-steering processors 

described earlier suggest a potential combination of the two outputs in a single processor.  

Specifically, we consider a new processor output defined by [8] 

 ( ) ( ) ( ) ( ) ( ) ( ), , ,s m s mpv pv pvik r ik r
s s m s s m s s

m m

B b e b eθ φ θ φ θ φ− −′= ×∑ ∑cardynull
i i        (2.37) 

where ( ) ( ),pv
m s sb θ φ  represents the standard cardioid weighting and ( ) ( ),pv

m s sb θ φ′  

represents the dynamic null-steering with ( )cos 2 sA θ= − [8]. This combined processor 

formulation will be referred to as “cardynull” processing.  As can be readily seen in 

Figure 10, the high look direction gain of the cardioid and ambiguity rejection of null-

steered  weighting are retained in the ideal cardynull processor.   

 



 21

  
 

 

Figure 10.   Cardynull Array Response at 90° (Broadside) and 45° Relative to Forward 
Endfire (Along the Vertical Axis) 

 

Another approach to increase beam directivity would be to consider element 

steering patterns that reduce the width of the main lobe by expanding the region of the 

null.  Motivated by the work of Smith and van Leijen [6], the non-linear “hippioid” 

results from the non-linear product of separately processed cardioid and velocity-only 

beamformers, such that  

 ( ) ( ),pv
s sB θ φ =non-linear-hippioid

 ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,s m s m s m s mp x y zik r ik r ik r ik r
m m s m s s m s s

m m m m

b e b e b e b eφ θ φ θ φ− − − −+ + + ×∑ ∑ ∑ ∑i i i i  
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 ( ) ( ) ( ) ( ) ( ) ( ), ,s m s m s mx y zik r ik r ik r
m s m s s m s s

m m m

b e b e b eφ θ φ θ φ− − −+ +∑ ∑ ∑i i i  ,   (2.38) 

or simply 

( ) ( ) ( ) ( ) ( ) ( ), , ,s m s mpv pv pvik r ik r
s s m s s m s s

m m

B b e b eθ φ θ φ θ φ− −′= ×∑ ∑non-linear-hippioid
i i  ,    (2.39) 

where ( ) ( ),pv
m s sb θ φ  represents the standard cardioid weighting and ( ) ( ),pv

m s sb θ φ′  

represents the weighting with 0A = (velocity-only dipole beamformer) [8] . 

As can be noted in Figure 11, the ideal hippioid processor produces similar 

left/right ambiguity rejection for signals arriving off-broadside as the cardynull processor.  

Near broadside, however, the hippioid performance still suffers from the lack of 

ambiguity rejection inherent in the velocity-only dipole component at these look 

directions.  This is to be expected since the hippioid processor, like the other fixed null 

processors, simply narrows the main beam without affecting the steering of the null itself.  

 

 

 

 

 

 

 

 

 

 

 

 



 23

 

 

 

          

 

 

Figure 11.   Hippioid Array Response at 90° (Broadside) and 45° Relative to Forward 
Endfire (Along the Vertical Axis) 
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III. MONTEREY-MIAMI PARABOLIC EQUATION 

The Monterey-Miami Parabolic Equation (MMPE) model [11], [12] is employed 

for the generation of all simulated ocean acoustic data in this thesis.  This model, derived 

from the Helmholtz equation, utilizes the split-step Fourier (SSF) algorithm to generate 

stable, efficient solutions to the parabolic wave equation.  Below is a description of the 

basic theory of the parabolic equation (PE), the split-step Fourier method used in the 

MMPE model, and the modifications and approximations used in generating the towed 

array data.  

A. HELMHOLTZ EQUATION 

To begin, we assume a time-harmonic acoustic field represented in cylindrical 

coordinates, i.e. 

 ( ) ( ), , , , , i tP r z t p r z e ωϕ ω ϕ −= . (3.1) 

Substitution into the linear wave equation in cylindrical coordinates leads to the 

Helmholtz Equation, 

 ( )
2 2

2 2
02 2 2

1 1 , , 0p p pr k n r z p
r r r r z

ϕ
ϕ

∂ ∂ ∂ ∂⎛ ⎞ + + + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
, (3.2) 

where 0
0

k c
ω=  is the reference wave number, ( ) ( )

0, , , ,
cn r z c r zϕ ϕ=  is the acoustic 

index of refraction, or the sound speed ratio between two mediums referenced to 0c .  

Thus all variations in the environment are represented within the function ( ), ,n r z ϕ .   

B. PARABOLIC EQUATION APPROXIMATION 

An approximation to the Helmholtz Equation begins by assuming cylindrical 

spreading in relation to a “reduced” pressure field defined by ( ),u r z such that  

 ( ) ( )1, ,p r z u r z
r

= , (3.3) 

which, when substituted into Equation (3.2), yields 
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2 2 2

2 2
02 2 2 2 2 2

0

1 1 0
4

u u u k n
r r z k rϕ

⎛ ⎞∂ ∂ ∂
+ + + + =⎜ ⎟∂ ∂ ∂ ⎝ ⎠

. (3.4) 

The last term drops off as 2
1

r  and is generally ignored.  Azimuthal coupling is 

introduced between radials by the second term, which is usually small and so typically 

neglected.  

The remaining terms of the Helmholtz Equation can be factored after introducing 

an operator notation 

 opP
r

∂
=

∂
, (3.5) 

 1opQ μ ε= + + , (3.6) 

where 

 2 1nε = +  , (3.7) 

 
2

2 2
0

1
k z

μ ∂
=

∂
 . (3.8) 

Proper factorization of the outward propagating field Ψ is obtained by defining  

  ( ), opu r z Q −1/2= Ψ                                                   (3.9) 

The outgoing wave can then be represented by 

 0op opP ik QΨ = Ψ . (3.10) 

If we assume that backscatter is negligible, the complete description of the forward 

propagating acoustic energy is represented by Equation (3.10) and is the foundation for 

all underwater acoustic PE models.   

If we assume a slowly-modulating function of the form 0ik reψΨ = , and rearrange 

Equation (3.10), we obtain 

 0 1opik Q
r
ψ ψ∂ ⎡ ⎤= −⎣ ⎦∂

 (3.11) 

 

From this we define the parabolic approximation to the Helmholtz Equation as 
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 0 01 op opik Q ik H
r
ψ ψ ψ∂ ⎡ ⎤= − − = −⎣ ⎦∂

, (3.12) 

where 1op opH Q= −  represents the Hamiltonian-like operator defining the evolution of 

the PE field function in range, and the PE field function itself is defined by 

 

 ( ) ( ) 00
0

ik r
op

Rp r P Q r e
r

ψ−1/2= . (3.13) 

The vector r  represents the vector notation from the origin to the point defined by 

( ), ,r z φ  in cylindrical coordinates. 

To propagate the acoustic field, we depend on operations which can easily be 

performed using the SSF algorithm.  To accomplish this, we employ the Thomson-

Chapman wide-angle PE (TC-WAPE) operator splitting [15] 

 op op opH T U= + , (3.14) 

where 

 
2

2 2
0

11 1opT
k z

⎡ ⎤∂
= − +⎢ ⎥∂⎣ ⎦

, (3.15) 

 ( ) ( )1opU n U ρ= − − + , (3.16) 

and ( )U ρ  is defined to account for density contrasts at the water/bottom interface.  By 

using the conventions 

 ( ) ( ){ }ˆ zz FFT kψ ψ= , (3.17) 

 ( ) ( ){ }ˆ zz IFFT kψ ψ= , (3.18) 

we may write 

 ( ) ( ) ( ){ }{ }
2

2
2

ˆ
op op zT z FFT T k IFFT z

z
ψ ψ

⎛ ⎞∂
= −⎜ ⎟∂⎝ ⎠

i , (3.19) 

where we now have a scalar operator 

 ( )
2

2

0

ˆ 1 1 z
op z

kT k
k

⎛ ⎞
= − − ⎜ ⎟

⎝ ⎠
 . (3.20) 
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The PE field function is then marched forward in range by the SSF algorithm 

 ( ) ( ) ( ) ( ) ( )0 00
, ,ˆ

2 2, ,op opop z

r rik U r r z ik U r zik rT kr r z e FFT e IFFT e r zψ ψ
Δ Δ

− +Δ −− Δ⎧ ⎫⎧ ⎫⎪ ⎪+ Δ = ⎨ ⎨ ⎬⎬
⎪ ⎪⎩ ⎭⎩ ⎭

. (3.21) 

C. ACOUSTIC PARTICLE VELOCITY FIELDS 

As previously shown by the linear Euler Equation (2.13), by taking the time 

derivative of the acoustic particle velocity and rearranging, the relationship between the 

time-harmonic acoustic pressure and particle velocity can be described as 

 
o

iv p
ωρ

= − ∇ . (3.22) 

In cylindrical coordinates (ignoring azimuthal contributions), we can write Equation 

(3.22) as 

 1 ˆ ˆ
o

v r z p
r zωρ

∂ ∂⎛ ⎞= − +⎜ ⎟∂ ∂⎝ ⎠
. (3.23) 

By substitution of Equation (3.14), and employing the defining Parabolic 

Equation (3.13), the velocity components may be defined as 

 00 0

0 0

ik r
r op

P Rv e Q
c r

ψ
ρ

≈  , (3.24) 

 00 0

0

ik r
z

iP Rv e
r z

ψ
ωρ

∂
= −

∂
 . (3.25) 

Each of these equations may be solved locally within the MMPE model.  At each 

range step, the vector operation of opQ  defined by Equation (3.6) may be applied to 

Equation (3.21) to propagate the pressure field in the range direction.  The vertical 

derivative in Equation (3.25) may also be solved by familiar Fourier transform 

techniques. Combined with the results of Equation (3.19), the final output of the MMPE 

model is then the complex pressure field and the radial and depth components of the 

complex velocity field.  This approach has been shown to provide accurate solutions to 

the full vector field [12]. 
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D. TOWED ARRAY APPROXIMATION 

From the MMPE model, the acoustic pressure and particle velocity are calculated 

from the source location to a point specified by the first element of the array.  The range 

step size for this part of the calculation is chosen to provide an accurate, long-range 

solution.  After reaching the first element, the model adjusts the range step size to 

correspond to the separation between elements relative to the aspect angle of the array to 

the source.  For example, using the geometry defined by Figure 1, if the element 

separation is designated d , then a source at end-fire will use a range step d  to compute 

the propagation of the field from the first element to all subsequent elements, whereas for 

an arrival angle θ relative to forward end-fire, a range step of cosd θ  will be used.  Thus, 

at broadside (θ = 90°), this reduces to a zero range step, and all elements record the same 

arrival structure in space [7]. This model assumes plane wave propagation from a far field 

source such that no significant curvature exists along the horizontal wavefront.   

The MMPE model outputs the radial and depth components of velocity.  Using 

our conventional geometry, the velocity response of each element in the x- and y-

directions can be derived from the radial velocity component by  

 cosx rv v θ= , siny rv v θ= , (3.26) 

where, again, θ  represents the arrival angle measured from forward end-fire.  The z-

direction is then accounted for by the depth component of velocity zv .  

Using the results of the MMPE model, and the modifications to the radial 

component of acoustic particle velocity above, we now have the vector signal at each 

element of our array.  By computing multiple frequencies over a specified bandwidth and 

employing standard broadband synthesis, acoustic time series can be generated.  The 

output is then a set of matrices of elements versus time for pressure, and three 

components of acoustic particle velocity.   

These simulate the received signal generated by a broadband source at a given 

range and environment along our towed array of 256 elements with .25 m spacing. For 

our broadband approximation, we set a 500 Hz filter band around our center frequency of 
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1500 Hz, such that the full frequency response of 1250Hz – 1750Hz (well within the 

spatial sampling constraints of our array spacing) is fully captured along the array 

aperture [7]. As most of our array processing assumes a far field planar wave response, a 

good approximation for the far-field (where wavefront curvature may be neglected) is 

provided when 

 
2

1.356Rr Rπ
λ

> >  (3.27) 

where R is the maximum radial extent of the array [13].  Using 256 elements, with a 

spacing of 0.25m, results in a broadside far-field of approximately 6380 meters from the 

center of the array.  This will be considered in choosing our test source ranges, and will 

be a significant factor for the response to a near field tow ship. 
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IV. DATA PROCESSING TECHNIQUES 

In Chapter II, Equations (2.23) and (2.31) define the ideal correlation processor 

for both a single element and an array of elements respectively. In practice, it is a simple 

extension of these equations, when applied to the spectral content of the time-dependent 

data, that can be used to discretize a planewave response in both space ( ),θ φ  as well as 

time. This holds for all frequencies “tuned” to a minimum ½ wavelength distance 

between sampling point array elements, as long as the elements themselves sample the 

signal in time at the Nyquist rate of at least twice the incoming frequency [13]. These 

responses can then be correlated to the “replica” weights in order to maximize response 

along the look angle ( ),s sθ φ . Correlation processing can produce very accurate solutions 

to a time varying planewave response with respect to bearing resolution in the look 

direction. However, in practice this method can become computationally cumbersome in 

providing the exact, non-interpolated bearing solution needed to justify the added 

processing time [7]. Thus, for certain applications, where a higher level of resolution is 

not necessary, more “efficient” methods may be used to shorten the computational load. 

A. FFT BEAMFORMING 

FFT beamforming is a fast and efficient technique to linearly combine the data 

and compare it to a representative incoming plane wave.  This method has been proven to 

be more efficient than plane-wave correlation processing due to existing optimized FFT 

algorithms in computational programs such as Matlab, but is generally not as accurate 

due to inherent interpolation necessary to quantify the spectral and spatial data [14]. 

These inaccuracies, however, have been shown to be of little consequence to the test 

cases provided [7]. 
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1. Pressure-Only Processing 

We begin with the time sampled pressure data, represented by a matrix pD , 

sampled over a given period, T.  The data matrix can be decomposed into a compilation 

of data vectors, d , such that  

 ( ) ( ) ( ) ( )0  2 ... p d d t d t d T⎡ ⎤= Δ Δ⎣ ⎦D  , (4.1) 

which represents the data of every element at every time step.  The vector d  is made up 

of the pressure element level data received at a given instant in time from the first to last 

element.  Thus the [MxN] data matrix has elements ( , )p m nD  that represent the measured 

pressure value at element m and sample time n, where M = 256 and N =512 in this 

analysis. The sampled data contains the desired pressure signal in the environment at the 

time of sampling for every array element.  The MMPE model generates a coherent output 

data set, such that all frequency components within the signal are in phase at the source 

location.  This is equivalent to transmission of an impulsive-like, coherent source.  An 

example of the output data matrix for a single coherent source in an isospeed 

environment is shown in Figure 13.  It represents the pressure output from the MMPE 

model on the towed array for a broadband (impulsive) source.  As the signal passes 

across the array, we are able to determine the distinct characteristics of the wave, such as 

a strong received signal just after 3.3 seconds corresponding to the direct path signal, and 

multiple reflections off of the surface and bottom tapering in strength.  A 100 dB 

dynamic range is used in order to fully illustrate the passing of the sound wave over the 

length of the array [7]. 
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Figure 12.   Time Sampled Data for Coherent Pressure Arrival Paths 

Analysis of a coherent, impulsive source may have its advantages as far as 

illustration of the reinforcement of signal path along the frequency band.  However, for 

the application of this thesis, we are interested in simulating a continuous signal in time.   

In order to simulate a continuous signal, we assume an incoherent source across the 

frequency band, such as would be realistic for a long duration source separated by an 

appreciable range. To allow for an incoherent source, every frequency bin of the signal 

was given a separate random phase factor of the form 2 'ie πθ , where 'θ  is a random 

number drawn from a uniform distribution over 0 to 1.  When the random number is 

applied to our random phase factor, we generate a set of uniformly distributed random 

phase factors from 0 to 2π.  An example of the output data matrix for an incoherent 

source is shown in Figure 13.   
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Figure 13.   Time Sampled Data for Incoherent Pressure Arrival Paths 

Figure 13.  contains neither a spatial nor temporal processing window. Spatial 

and/or temporal windows can be applied in order to optimally “taper” off the amplitude 

of the data along the analysis window, providing better spatial and/or temporal resolution 

in the middle of the window and minimize discontinuities at the ends. The spatial 

window would be applied at each time step along the length of the array, while the 

temporal window would be applied at each element along the sample time.[13]  In 

computational programs such as Matlab, a variety of these amplitude window functions 

exist. For the purposes of this thesis, we will employ a Hanning (cosine squared) spatial 

window to the elemental data prior to processing.  

Next, a two-dimensional Fourier transform of the input data matrix is computed, 

such that 

 ( ) ( ){ }1, ,p t x pK F F x tω −=D D  , (4.2) 

where -1
xF  represents the inverse transform along the spatial variable and tF  represents 

the forward transform along the time variable.  This matrix then represents the 

transformation of the input data matrix from time-element space into K-ω space, where K 

represents the wavenumber component along the array, 
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 2cos cosfK
c c
ω πθ θ= =  . (4.3) 

Since the frequency, and hence K, are discretely sampled, we can obtain the specific 

values of θ  for each element of the matrix by 

 ,cos
2

m
m n

n

K c
f

θ
π

=  . (4.4) 

 

The frequency values can be computed by first determining the fΔ  of the sampled data 

where 

 1 sff
T N

Δ = =  . (4.5) 

The sampling frequency is sf  and the total number of time samples is N.  Next the 

frequency vector is computed such that the vector is the same size as the sample time, 

and the frequency values themselves are then set relative to the center frequency of 1500 

Hz.  Since we have a total of N time samples, the frequency values are 

 ( )1
2j
Nf j f⎛ ⎞= − − Δ⎜ ⎟

⎝ ⎠
 (4.6) 

where 1,...,j N= [7]. 

We now wish to re-map from K-ω space into θ -ω space by using the above 

relationships.  We create a vector of values, bK , given by 

 ( )
2 cos

, j i
b

f
K i j

c
π θ

=  , (4.7) 

where we have defined the values of iθ  over some arbitrary range, and the frequency 

values are computed by Equation (4.6).  In the normal process of computing a pressure-

only beamformer, the range of values of iθ  would range from 0 to 180 degrees relative to 

some fixed point along the array, usually chosen as forward end-fire.  In order to better 

compare the output of the pressure-only beamformer to that with the vector data included, 

we will extend the output values of iθ  to include 360 degrees.  The new range of our 

output angles will extend from -180 to 180 degrees, where the negative values of iθ  

represent the port side of the array and the positive values represent the starboard side.  
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Note from the definition of the directional derivatives in Equation (2.22), this is 

equivalent to defining the iθ  values as ranging from 0 to 180 deg, and φ set to 0 deg for 

starboard and 180 deg for port [7]. 

Using the transformed data matrix in K-ω space, we can convert it into θ -ω space 

by first performing an interpolation of the data matrix over each frequency from mK  to 

bK .  The interpolation is needed in order to represent every incoming angle we desire 

when we do not have a sufficient number of elements to do this directly.  In 

computational programs, such as Matlab, there are a number of different methods from 

which you can perform this interpolation.  In this thesis, a cubic spline data interpolation 

was used because of the increased accuracy of the interpolation in comparison to other 

methods available [7]. 

Figure 14.  below represents a typical θ -ω space plot converted to a θ -f space 

plot relative to forward end-fire (θ =0°).  The mirror image on either side of end-fire 

results from both solutions to a plane wave response, illustrating the inherent θ  

ambiguity normally associated with processing pressure-only data with no other 

directional sensor information.  

 

Figure 14.   Natural Order Frequency vs. Angle for Pressure Data 
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The average spectral content can then be determined by simply summing the 

spectral content of each look angle and averaging the total. Figure 15 represents the 

average spectral content across all look angles. The 500Hz filter band (centered at 1500 

Hz) for our simulated data is readily apparent in this representation.  

 

Figure 15.    Average Spectral Content for Pressure Data 

 
The data matrix can now be transformed back into the time domain by taking the 

inverse Fourier transform, 1Fω
− , of the data matrix across the frequency bins.  This maps 

the data matrix from θ -ω space into θ -time space.  The result is an output of arrival 

angle versus time.  Figure 16.  represents both the coherent and incoherent source 

pressure data in θ -time space. The data has been reoriented to show the first arrival time 

at the top and subsequent time moving down the y-axis.  The color axis represents the 

output signal, in dB, referenced to the maximum received signal along the array.  The 

nominal dynamic range of the output is 60 dB which was chosen to provide the best 

representation of the signal and reject very low level noise in the processing or 

environment [7]. This convention will be used throughout this thesis. For our test case 

analysis, only the incoherent data will be used in order to better represent a sustained 

steady signal from a distant source.  
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Figure 16.   FFT Beamformer, Pressure-Only Coherent (Top) and Incoherent (Bottom) 
Data 

We can then add background “noise” to each of the channels by using a Gaussian 

distribution random number generator referenced to the maximum received pressure 

magnitude at a single array element for the given source target. Thus by setting the noise 

magnitude at the same level as the maximum pressure magnitude reference, the signal-to-

noise (SNR) ratio can be set to unity for each element of the array, providing 0dB SNR 

level reference, equal to 20log(SNR). This provides a method of scaling the SNR level, 

and thus setting a more realistic environment to our simulation. For the purposes of our 

analysis, we thus define our “noiseless” environment test cases at a SNR level of 40dB, 

whereas our “noisy” environment is set at a 0dB SNR level. Figure 17 represents the 

same incoherent pressure-only data in a noisy environment. 

 



 39

 
 

Figure 17.   FFT Beamformer, Pressure-Only Incoherent Data in Noisy Environment 

 

2. Vector Data Processing 

Before processing vector data, we first must consider how to build the synthetic 

data matrices.  Both the radial and depth components of velocity are sampled individually 

at the same sample frequency and with an equal number of array elements.  Random 

phasing is applied to the velocity data in order to generate the incoherent data just as 

described previously with the pressure data [7].  These are illustrated below in Figure 18. 



 40

 

 

Figure 18.   Time Sampled Data for Coherent (Top) and Incoherent (Bottom) Velocity 
Signals for Radial Vector Component 

This results in four distinct, yet related, data matrices.  These are represented by 

derived from the radial and depth components of velocity by Equation (3.27).  Each of 

these data matrices are transformed, separately, into K-ω space and then interpolated and 

averaged as described above to θ-f space representation. Now the inherent advantage 

associated with processing the vector data is clear, as there is a distinct directional 

“preference” to the incoming planewave response in θ as illustrated in Figure 19 [7]. 
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Figure 19.   Natural Order Frequency vs. Angle (Top) and Average Spectral Content 
(Bottom) for Velocity Data 

The combination of the data takes place in θ -ω space where a summation matrix 

of values is computed such that 

 cos sin cos sin sinpv p x s y s s z s sc c cρ θ ρ θ φ ρ θ φ= + +D D + D D D . (4.8)             

This relationship both steers the velocity components of the transformed data matrices to 

the assumed arrival angle of the incoming plane wave and rescales the velocity values by 

the factor ρc for normalization with the pressure data.  We use the same range of iθ  

given in the pressure-only processing, -180 to 180 degrees, and represent the angle 
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relative to forward end-fire in the xy-plane.  The elevation angle, φ, represents the angle 

relative to the vertical depth axis, referenced to starboard.  In this case, we only allow 

values of 0 or 180 deg.  Thus, we neglect the vertical velocity component in Equation 

(3.35).  Finally, the inverse Fourier transform, 1Fω
− , of the resulting combined data 

matrix, pvD , is taken, which produces the plot in Figure 19.  Again, however, only the 

incoherent data will be used in our further analysis. 

 

 

Figure 20.   Time Sampled Data for Coherent (Top) and Incoherent (Bottom) Arrival 
Paths 
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As before, the vector data can be set to exhibit random noise relative to the 

maximum received pressure level at a single array element for the given source target, 

thus allowing SNR level to be controlled for the velocity channels as well for both a 

“noiseless” and “noisy” environment illustrated in Figure 21.   

 

Figure 21.   FFT Beamformer, Vector Incoherent Data in Noisy Environment 

 
 

The data can then be summed across time for each of the 360 look angles, and 

divided by the number of time samples (N = 512) such that the data is “time-averaged” 

over the analysis window across each look angle. Although a simple processing 

technique, it can nonetheless prove to be a powerful tool in signal recognition given a 

sufficient time span for both high and low SNR sources.  In Figure 22 below, the correct 

target aspect (dashed red line) is clearly distinguishable in both the noiseless and noisy 

environment with vector processing, and made more recognizable by time averaging.   
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Figure 22.   Time Averaged Pressure and Vector Signal Data for Both Noiseless (Top 

Set) and Noisy Environment (Bottom Set)  
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By processing the pressure and velocity data separately and scaling appropriately, 

we create the flexibility necessary to more efficiently “build” the beamformed processors 

described in Chapter II, as the inherent differences between each unique processor are 

then simply a function of applied weighting and combinations of separately processed 

weightings. Similarly, individual weightings can be scalar amplified to enhance or 

degrade the properties of those beams as necessitated by the background noise level, as 

we shall demonstrate.  

Both the color and time-averaged dB plots will be used throughout this thesis as a 

side by side comparison tool of both the cardioid and optimal weighting to the scalar-

pressure processor, as well as the various other processors to the baseline cardioid for 

both single element and linear array analysis. The metrics to be measured will then be 

look directivity gain (relative to the pressure-only case) and noise level change (from the 

high SNR to low SNR environment) in the look direction for the single element case. 

This will provide insight into our array analysis, where we will compare SNR gain 

(relative to the noise floor) and ambiguity rejection (difference in look direction intensity 

and conjugate angle intensity) for the array case.  These metrics will be tested in both 

high and low SNR environments where applicable. 
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V. SIMULATION RESULTS 

A. DATA SOURCES 

The data generated using the MMPE model consisted of six distinct sources at 

different ranges, depths and aspect angles, as given in Table 1.   

Source Range (km) Depth (m) Bearing
1 20 45 45
2 10 5 80
3 18 7 100
4 15 30 -50
5 12 35 -105
6 0.2 40 0  

Table 1.   Sound Sources 

 

The geometry of the source locations, as seen from above, is shown in Figure 23, 

where the bearing represents the angles bearing from forward endfire.  These were 

chosen to allow for different combinations of sources that could prove difficult or 

challenging for pressure only beamforming techniques to determine where they are 

located, such as sources on nearly ambiguous angles but opposite sides of the array.  

Source 6 is used to simulate a tow-ship for the array, located 200 meters directly in front 

of the array at the same depth of 40 meters, thus representing the only “near-field” source 

of Equation (3.27). This combination of signal data easily allows for variations in source 

levels between the different targets of interest when setting a common source level of 0 

dB [7]. The exception will be Source 2, which is set 20dB higher than the other sources 

in order to represent a loud interfering source.  
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Figure 23.   Source Geometry 

 

Our shallow water environment is represented by a 1500m/s isospeed sound speed 

profile (SSP) coupled to a singular, zero-elevation bottom type for simplicity, with the 

properties given in Table 2 [7]. 

 

Bottom Depth (m) 150
Sound Speed (m/s) 1600
Bottom Density (g/cm3) 1.2
Attenuation, α (dB/km/Hz) 0.1  

Table 2.   Bottom Data 
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B. SINGLE ELEMENT ANALYSIS 

Using the FFT beamforming algorithms discussed, we can thus combine the 

pressure and velocity component signal contributions for a single element response to our 

two test sources 1 & 3 (45°, 100°).  When employing the standard FFT cardioid 

beamformer weighting of Equation (2.25), for a single element response, the added 

directionality obtained is apparent, as well as the theoretical gain over the conventional 

scalar pressure counterpart in Figure 24. As expected, for the single element cardioid, 

beam response is independent of look direction, and the steer angle is in the look 

direction ( sθ θ= ). 

 

 

Figure 24.   Single Element Cardioid and Scalar Pressure Comparison for Sources 1 & 
3 (45°,100°) 
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When we add noise to the single element and take the SNR level to 0dB, the 

directionality begins to degrade, as well as the look direction gain, since the channel 

noise level is set to the pressure and vector input signal contribution, as illustrated in 

Figure 25.  

 

 
 

Figure 25.   Single Element Cardioid and Scalar Pressure Comparison for Sources 1 & 
3 (45°,100°) in Noisy Environment 
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When we apply optimal weighting of Equation (2.27), the FFT beamformer now 

increases the look direction signal gain and decreases the main lobe width from the 

cardioid response as expected, but at the expense of creating a significant backlobe.   

 

 

 
 

 
 

Figure 26.   Single Element Optimal and Scalar Pressure    Comparison for Sources 1 
& 3 (45°,100°) 
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However, when the noise in the channel is increased, the increased weighting 

factor becomes detrimental to performance, as directionality becomes increasingly 

ambiguous and gain in the look direction decreases dramatically.  

 

 
Figure 27.   Single Element Optimal and Scalar Pressure    Comparison for Sources 1 

& 3 (45°,100°) in noisy environment 
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Applying the dynamic null-steering weighting of  Equation (2.30), and comparing 

to the similarly weighted cardioid displays the inherent problem associated with single 

element null-steering, as the “skew” from the peak response for off-broadside look angles 

is readily apparent, thus rendering true target aspect problematic in the single element 

case. However, the null is now steered to the ambiguous angle for both test sources 1 and 

3 (45°,100°), which will be of higher application in linear array analysis. 

 

Figure 28.   Single Element Dynamic Null-Steered and Cardioid Comparison for 
Sources 1 & 3 (45°,100°)  
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Increased ambiguity ensues when additional noise is added, as the dynamic null 

itself gets “washed” out when the SNR level is taken to 0dB. This curious effect is due to 

the dynamic null-steered pressure weighting dominating over both signal and noise, 

evident in the time averaged plot in a noisy environment. 

 
 

 
 

Figure 29.   Single Element Dynamic Null-Steered and Cardioid Comparison for 
Sources 1 & 3 (45°,100°) in Noisy Environment 

 

A summary of single element array performance is presented in Tables 3 and 4,  

where we are comparing directivity gain (relative to the pressure-only sensor) and noise 

increase in the look direction (relative to the low SNR case. Both the cardioid and 

optimal weighting appear to conform to earlier predictions of 6dB and 12dB look 

direction signal gain respectively, and it is thus apparent that in high SNR environments, 

the optimal linear weighting  ( 3; 1xn yn zn pnw w w w= = = = ) can have distinct benefits over 

the uniform weighting ( 1xn yn zn pnw w w w= = = = ) in both look direction gain and 
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decreased main lobe width. However, optimal weighting is outperformed by the uniform 

cardioid weighting in lower SNR environments, where channel noise dominates the 

increased directional weighting. This will be a more significant factor in the array 

analysis. The other weighting schemes provide little to no benefit for the single element 

case.  

 

  SNR level = 40dB 
  SINGLE ELEMENT Source 1 (45°) Source 3 (100°) 
  Δ Direct (dB) Δ Direct (dB) 
Scalar Pressure 0 0 
Cardioid 5.98 6.04 
Optimal  11.94 12.05 
Dynamic Null-Steered -.10 5.80 

 

Table 3.   Single Element Comparison Summary for Noiseless Environment 

 
  SNR level = 0dB 
 SINGLE ELEMENT   Source 1 (45°) Source 3 (100°) 
  Δ Noise (dB) Δ Noise (dB) 
Scalar Pressure 9.13 9.68 
Cardioid 6.75 7.19 
Optimal  7.82 8.44 
Dynamic Null-Steered 9.79 7.34 

Table 4.   Single Element Comparison Summary for Noisy Environment 

C. LINEAR ARRAY ANALYSIS 

When examining the results of the full vector sensor array processing, the 

standard cardioid beamformer clearly proves its superiority over conventional pressure-

only processing. A distinct gain in the look direction is observed in the high SNR case, as 

well as a clear rejection of the conjugate angle, especially apparent for source 2 (100°), is 

illustrated for the cardioid array in Figure 30. It can be noted that for source 1 (45°), 

however, this ambiguity rejection is less apparent, as expected of contacts further away 

from broadside due to the relative null placement of the individual cardioid weightings.  
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Figure 30.   Cardioid and Scalar Pressure Array Comparison for Sources 1 & 3 

(45°,100°)  

When we increase the environmental noise, the standard cardioid processor holds 

relatively well in terms of signal gain in the look direction and relative ambiguity 

rejection, as observed in the Figure 31 below. It is interesting to note that the ambiguity is 

essentially “washed” out by the noise floor in low SNR environments for Source 3. 
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Figure 31.   Cardioid and Scalar Pressure Array Comparison for Sources 1 & 3 
(45°,100°) in Noisy Environment 
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Optimal weighting in low noise environments increases signal gain in the look 

direction, as expected in Figure 32, with a tendency to favor targets further away from 

broadside in terms of ambiguity rejection due to the relative null placement of the 

individual optimal weightings.   

 

 
 

Figure 32.   Optimal and Scalar Pressure Array Comparison for Sources 1 & 3 
(45°,100°)  

With increased channel noise, the optimal weighting processor shows similar 

ambiguity “washout” for Source 1 but drastic signal recognition loss for Source 3 in 
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Figure 33. Overall, the optimal weighted array suffers drastic SNR loss in the look 

direction relative to the noise floor due to increased channel noise of the weighted 

velocity elements. 

 
 

Figure 33.   Optimal and Scalar Pressure Array Comparison for Sources 1 & 3 
(45°,100°) in Noisy Environment 

The shortcomings of common vector array steering along different look angles for 

fixed null weighting is apparent in both the cardioid and optimal case. The benefits of 
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dynamic null-steered weighting, then, are readily apparent in Figure 34, displaying 

remarkable ambiguity rejection at high SNR regardless of look angle. It is apparent that 

common vector steering of a multi-element array of dynamic null-steered elements now 

matches peak response in the look direction, though the array suffers decreases in look 

direction signal gain when compared to standard cardioid processing for off-broadside 

look angles due to “skew” effects of the individual elements. 

 

 
Figure 34.   Dynamic Null-Steered and Cardioid Array Comparison for Sources 1 & 3 

(45°,100°)  

In noisier environments, the dynamic null-steered processor begins to suffer from 

large fluctuations in the noise floor due to the dynamic null pressure weighting. Although 
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the increased noise floor washes out ambiguity for both Sources 1 and 3, the overall 

signal gain is still less than the cardioid processor for both sources in Figure 35.  

 

 
Figure 35.   Dynamic Null-Steered and Cardioid Array Comparison for Sources 1 & 3 

(45°,100°) in Noisy Environment 
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D. NONLINEAR ARRAY ANALYSIS 

One approach to combine the positive benefits of the different beamformers 

previously described is to take the product of the outputs of two separately processed 

beams to form a nonlinear, hybrid processor.  

The “cardynull” essentially combines the benefits of the standard uniformly 

weighted cardioid ( 1)xn yn zn pnw w w w= = = =  with the unique properties of dynamic null-

steering ( )( 1; cos 2 )xn yn zn pn sw w w w θ= = = = −  in order to provide better directivity and 

ambiguity rejection at all look angles.  

Another train of thought seeks to achieve higher directivity by utilizing a 

combination of beamshapes. Thus, the “hippioid”[6] involves the beamform combination 

of the standard uniformly weighted cardioid ( 1xn yn zn pnw w w w= = = = ) and a vector-only 

dipole ( 1; 0xn yn zn pnw w w w= = = = ). 

Both the cardynull and hippioid have similar advantages over the standard 

cardioid in both low and high noise environments for off-broadside sources in terms of 

look angle directivity gain and ambiguity rejection.  However, only the cardynull can 

compete with the cardioid in both low and high noise environments for sources near 

broadside, as can be observed in  Figures 36-39, as the hippioid suffers poor ambiguity 

rejection at these angles, as expected, due to the dipole beamformer component. 

 

 

 

 

 

 



 63

 
 

Figure 36.   Cardynull and Cardioid Array Comparison for Sources 1 & 3 (45°,100°)  

 
Figure 37.   Hippioid and Cardioid Array Comparison for Sources 1 & 3 (45°,100°)  
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Figure 38.   Cardynull and Cardioid Array Comparison for Sources 1 & 3 (45°,100°) 

in Noisy Environment 

 

 
Figure 39.   Hippioid and Cardioid Array Comparison for Sources 1 & 3 (45°,100°) in 

Noisy Environment 
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The overall performance comparisons, in terms of look direction SNR gain 

(relative to baseline noise floor) and ambiguity rejection (relative to conjugate angle), are 

summarized in Tables 5 and 6. For noiseless environments, optimal weighting provides 

the highest SNR gain in the look direction whereas dynamic null-steering provides the 

best ambiguity rejection. However, for noisy environments, standard cardioid weighting 

provides the best SNR look direction gain, and dynamic null-steering still provides the 

best ambiguity rejection (though not necessarily for all look angles). Cardynull 

processing appears to be a compromise between the two in most cases. It can be noted 

that the directivity gain in the look direction of 6dB and 12dB respectively holds for both 

the cardioid and optimal weighting in high SNR environments, but only the cardioid 

retains the same directivity gain in the low SNR case. 

 
                              SNR level = 40dB   
         ARRAY                 Source 1 (45°)            Source 3 (100°) 
  Δ SNR (dB)  Δ Reject (dB) Δ SNR (dB)  Δ Reject (dB) 
Scalar Pressure 44.7 0 46.27 0
Cardioid 50.7 5.95 52.3 30.89
Optimal  56.69 11.94 58.33 6.82
Dynamic Null-Steered 44.75 34.75 52.03 49.01
Cardynull 47.66 29.12 52.16 40.78
Hippioid 47.66 29.09 49.29 15.73

 

Table 5.   Array Comparison Summary for Noiseless Environment 

 
 

                              SNR level = 0dB   
         ARRAY                 Source 1 (45°)            Source 3 (100°) 
  Δ SNR (dB)  Δ Reject (dB) Δ SNR (dB)  Δ Reject (dB) 
Scalar Pressure 10.2 0 11.1 0
Cardioid 15.84 5.6 17.36 15.64
Optimal  11.91 9.54 13.49 6.29
Dynamic Null-Steered 9.93 10.98 17.13 15.38
Cardynull 12.85 9.37 17.27 15.82
Hippioid 12.94 9.42 14.4 8.98

 

Table 6.   Array Comparison Summary for Noisy Environment 
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E. MULTIPLE SOURCES 

The inherent advantage of null-steering is most obvious when taking the case of 

the tow-ship and two distinct sources within proximity of each other’s conjugate angle in 

a high SNR environment (allowing more multiple target interference). All sources, 

including the tow-ship, are set at the same (0dB) source level.  The tow-ship, in this case 

about 60-100 times closer than the rest of the sources, appears significantly louder. In the 

cardioid case, the inherent resolution issue forward of the beam is most apparent, 

especially when the sources are caught, as is the case for sources 1 and 4 (45°,-50°), in 

the sidelobes of the near-field tow-ship. This is less of an issue for sources 2 and 5 

(100°,-105°), which appear distinctly, yet the tow ship still dominates the acoustic field, 

as shown in the Figure 40  below on a color dB for signal recognition, and a polar dB plot 

for illustration of the near field effect sidelobe structure.                 

 

  
Figure 40.   Left: Cardioid Sources 1&4 (45°,-50°) with Tow-Ship (0°) Right: 

Cardioid  Sources 3&5 (100°,-105°) with Tow-Ship (0°)     
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With cardynull processing, the dynamic null-steering element will significantly 

nullify the effects of endfire targets (in which the conjugate angle is also the look angle), 

thus “flattening” the mainlobe of the tow-ship, and allowing the off-broadside targets to 

appear more distinct and with a higher dB gain relative to the tow-ship in Figure 41. 

 

 

   
 

Figure 41.   Left: Cardynull Sources 1&4 (45°,-50°) with Tow-Ship (0°). Right: 
Cardynull Sources 3&5 (100°,-105°) with Tow-Ship (0°) 
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When full dynamic null-steering is implemented, the tow-ship mainlobe is 

completely suppressed by null placement at endfire. In addition, side lobes are now also 

degraded in intensity such that sources previously hidden are more clearly visible, as well 

as at a much higher dB gain relative to the tow-ship in Figure 42. The benefits of 

dynamic null-steering in this case are still just as pronounced in the low SNR 

environment, as illustrated in Figures 43-44, with the addition of noise “washout” of the 

conjugate source angles and sidelobe structure of the towship. 

 

 

 

  
Figure 42.   Left: Null-Steered Sources 1&4 (45°,-50°) with Tow-Ship (0°). Right: 

Null-Steered Sources 3&5 (100°,-105°) with Tow-Ship (0°) 
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Figure 43.   Null-Steered Sources 1&4 (45°,-50°) with Tow-Ship (0°) for Both 

Noiseless (Left) and Noisy (Right) Environments 

 
Figure 44.   Null-Steered Sources 3&5 (100°,-105°) with Tow-Ship (0°) for Both 

Noiseless (Left) and Noisy (Right) Environments  
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The final case for the benefits of  null-steering utilize the combination of a  noisy 

interferer (Source 2) and the sidelobes of the near-field tow-ship “blinding” out a hidden 

Source 1 using standard cardioid processing, which becomes increasingly more apparent 

after dynamic null-steering as demonstrated in Figure 45.  

 

   
 

Figure 45.   Cardioid and Null-Steered Comparison of Source 1 (45°) and Loud 
Interferer (80°) with Tow-Ship (0°) 

 

The effects are even more pronounced in the low SNR environment of Figure 46 

below, where both the effects of the near-field of the tow-ship and the ambiguous arrival 

of the loud interferer are washed out. In this case, the loud interferer itself dominates the 

acoustic field and the background noise, although set at the 0dB SNR level, has less 

detriment to signal recognition. 
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Figure 46.   Cardioid and Null-Steered Comparison of Source 1 (45°) and Loud 

Interferer (80°) with Tow-Ship (0°) in Noisy Environment  
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VI. CONCLUSIONS 

The benefits of vector sensor arrays over their scalar pressure counterparts have 

been demonstrated with conventional linear cardioid processing, both in directivity gain 

and ambiguity rejection, due to the addition of three more sensor channels.[7] Yet the 

flexibility inherent in these channel weightings has also demonstrated processing 

schemes which may provide additional benefits over conventional linear cardioid 

processing. These processors can be utilized with established FFT algorithms to 

sufficiently approximate the ideal correlation processor, sacrificing accuracy for  

efficiency of processing time, and remain much easier to implement than other 

computationally intensive, directivity maximizing techniques such as data adaptive 

processors. 

 In this thesis, we have analyzed the benefits of various linear and nonlinear 

“hybrid” beamforming processors available with vector sensor processing, and compared 

them, using directivity, SNR gain and ambiguity rejection as a standard metric, against 

test cases developed in the previous work of Jautaikis [7].  The analysis shows that 

although higher directivity gain in the look direction is achieved in both low and high 

noise environments by the uniformly weighted linear cardioid, the dynamic null-steered 

processor provides unquestionable ambiguity rejection benefits in the same environments 

for all look angles (though with the sacrifice of directivity) providing added benefit in the 

presence of noisy interferers. A nonlinear hybrid of the two processors, the cardynull, 

provides a combination of the benefits of the two in most cases. 

The inherent advantage of incorporating these processors in FFT beamforming 

allows for a reasonable real-time processing window for the data, such that one  

processor can be utilized in first acquiring low SNR targets of interest in tactical ocean 

environments, then another processor (or a varying degree nonlinear combination of the 

two) can then be used for better ambiguity resolution without the need for target motion 

analysis or lengthy post-processing times.  
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